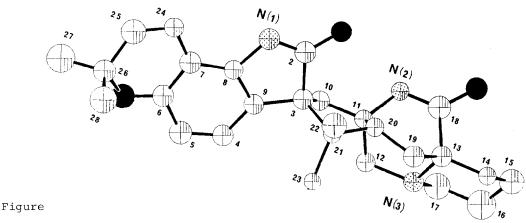
STRUCTURES OF MARCFORTINE B AND C (X-RAY ANALYSIS), ALKALOIDS FROM PENICILLIUM ROQUEFORTI

THIERRY PRANGÉ, MARIE-ANNICK BILLION, MARC VUILHORGNE, CLAUDINE PASCARD and JUDITH POLONSKY^{*} Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 Gif-sur-Yvette, France.

> and SERGE MOREAU Unité de Biologie et de Biochimie Parasitaires, INSERM, 59650 Villeneuve d'Ascq, France.

<u>Summary</u>: Marcfortine B and C are minor alkaloids isolated from the mycelium of <u>Penicillium roqueforti</u>. The structure of marcfortine B was established by spectral means and that of marcfortine C by X-ray diffraction analysis.

A previous study ¹ of the <u>Penicillium roqueforti</u> strain B26 resulted in the isolation, along with roquefortine ², of three new alkaloids which have been designated marcfortine A, B and C. The major component, marcfortine A, $C_{28}H_{35}N_{3}O_{4}$, was shown to have structure <u>1</u> and to be the first fungal alkaloid to possess a seven membered ring formed by linkage of a isoprene unit to two phenolic hydroxy-groups on the tryptophan unit. We herein report the structural elucidation of the two other components, marcfortine B <u>2</u> and marcfortine C 3.


Marcfortine B <u>2</u> crystallized from ethyl acetate, m.p. 178-180°, $\left[\alpha\right]_{D}^{22} - 67.7^{\circ}$ (c 1.77, CHCl₃); u.v. λ_{max} 229 nm (ϵ 20755). The high resolution mass spectrum established the molecular formula of <u>2</u> as $C_{27}H_{33}N_{3}O_{4}$ (M⁺. at m/z 463.2479) which differed from that of marcfortine A by one methylene unit. This difference is accounted for by the absence of a resonance due to a N-CH₃ grouping in the ¹H-n.m.r. spectrum of <u>2</u> and suggests that <u>2</u> was 29-nor-marcfortine A. The 250 MHz ¹H n.m.r. of marcfortine B (Table I) displayed in the downfield region the same resonances as that of <u>1</u>, namely the AB quartet due to the two contiguous aromatic protons (H-4 and H-5) and the widely separated olefinic AB quartet due to H-24 and H-25. The chemical shifts for the four methyl groups were also identical whereas the pattern between δ 1.5 and 3.7 ppm was slightly different. Double resonance experiments identified other signals : the triplet due to H-20 and the three two-proton AB patterns due to the methylenes α to nitrogen (H-12 and H-17) and to the C-10 methylene. The ¹³C n.m.r. spectrum (Table II) of marcfortine B <u>2</u> was also

⁹This paper is dedicated to the memory of the late Professor F. Sorm.

Table I: 250 MHz 1 H n.m.r. spectraTable II: 13 C n.m.r. spectra 3 of $\underline{1}$, $\underline{2}$ of $\underline{2}$ and $\underline{3}$ [δ in ppm, J as (Hz)].and $\underline{3}$; a-d Signals may be reversed.							versed.
	$\frac{2}{2}$	$\frac{3}{2}$		<u>1</u>		<u>2</u>	<u>3</u> ~
H-4	6.66 d (8.1)	6.86 d (8.1)	C-2	183.3	s	183.1	185.5
н-5	6.79 d	6.42 d	C-3	60.6	s	61.4	61.0
H-24	6.39 d	6.44 d	C-4	120.2	d	120.4	124.4
H - 25	(7.5) 4.91 d	(10) 5.82 d	C-5	114.9 ^a	d	115.0 ^a	109.4
H-12	3.71	3.68 d	C-6	146.2	S	146.1	153.1
11 12	(11.2)	(11.2)	C-7	132.8 ^b	S	132.6 ^b	105.6
	2.48 br.d	2.45 br.d	C-8	135.4 ^b		135.4 ^b	137.8
H-20	3.08 t	3.08 t	C-9	124.9	S	124.9	121.2
	(10)	(10)	C-10	37.0	t	39.9	39.6
H-17	2.70 dd	2.67 dd	C-11	63.1 ^C	S	61.4 ^C	61.2
	(11.2) 2.48 br.d	(11.2) 2.45 br.d	C-12	61.5	t	61.4	61.4
			C-13	64.2 ^C	s	63.1 ^C	62.6
26-Me	1.45 1.43	1.45 1.43	C-14	31.7	t	31.1 ^d	30.8
2 1 1			C-15	20.7	t	20.9	20.7
21-Me	1.08 0.81	1.08 0.81	C-16	25.9	t	25.9	25.7
			C-17	54.5	t	54.6	54.5
		17 " 16	C-18	173.9	s	177.1	177.2
		N. Y	C-19	31.7	t	31.8 ^d	31.5
	22 Me	20 ¹² 13	C-20	52.9	S	54.2	54.3
		19 18	C-21	46.5	t	46.7	46.3
		T N O	C-24	139.2	d	139.1	116.3
	\$ *	3 10 R 29	C-25	117.2 ^a	d	117.8 ^a	131.4
97		29	C-26	79.8	S	79.8	76.8
27 Me 0		² U <u>1</u> R=Me 2R=H	26-Me	-	-		9.7 27.8, 27.8
X ₂₆	0	<u>-</u>	21-Me		23.8 q	23.9, 2	0.6 23.7, 20.1
Me 25	- 24		N-Me	26.4	q		[×] No Off Res.
27 Me 0 28 Me 2	23 Me Me Me Me Me Me Me Me Me Me Me Me Me	20 10 10 10 10 10 10 10 10 10 10 10 10 10				(1): C ₁₂ H ₁₅ (m/z 177	

Scheme 1

closely related to that of <u>1</u> and showed the presence of an indolinone (δ 183.1) and of an amide function (δ 177.1). The structure of <u>2</u> was further supported by its mass spectrum which showed abundant fragments ions at m/z 420, due to the loss of NHCO, and at m/z 177.1480 ($C_{12}H_{19}N$, 29 %) and at m/z 149.1195 ($C_{10}H_{15}N$, 100 %) which can be attributed to ions (I) and (II), respectively (scheme 1). These ions probably arise by cleavage of the 3,21 carbon bond <u>via</u> a McLafferty rearrangement, loss of the elements of fulminic acid (HNCO) and fragmentation mainly directed by the charge-stabilizing nitrogen atom [N(3)].

Molecular structure of marcfortine C

Marcfortine C 3 crystallized from ethylacetate as colorless prisms, m.p. 264-267°, $[\alpha]_D^{22}$ - 64.4° (c 1.1, CHCl₃); u.v. λ_{max} 246 nm (ϵ 11490). It has the composition $C_{27}H_{33}N_{3}O_{3}$ (M^{+•}447) which in conjunction with its ¹Hn.m.r. spectrum (Table I) indicated that 3 differs from marcfortine B 2 by the presence of singly oxygenated six membered ring located on the tryptophan moiety. The complete structure of marcfortine C 3 was provided by single crystal X-ray analysis. Crystal data : Monoclinic, space group P2,, a = 25.274 (4), b = 8.238 (3), c = 13.084 (3) A°, β = 91.56 (6)° and \overline{Z} = 4. 4377 (2396 > 2σ) independent reflections were scanned on a four-circle automatic diffractometer using graphite-monochromatized $Cu-K\alpha$ radiation. The structure was solved using the Patterson search method 4 with a selected starting set of coordinates from the marcfortine A ring system ¹. The initial rigid model contained 21 atoms. The best figure of merit was the starting point of Fourier recycling procedures which converge to R = 26 % and revealed the whole set of the 66 atoms of the two independant molecules of the asymetric unit. Isotropic refinement 5 was conducted to R = 13 % with hydrogen atoms introduced at their theoretical places. No anisotropic refinement was performed because of the paucity of the data.

The molecular structure of marcfortine C $\underline{3}$ is shown in the Figure. The ¹H n.m.r. and ¹³C n.m.r. (Table I and II) spectra were consistent with this structure. The electron impact mass spectrum of 3 displayed a fragment ion at m/z 404 (due to the loss of NHCO) and also showed abundant fragment ions in the medium mass range at m/z 177 and 149 (base peak) (see scheme 1).

The similar mass spectral fragmentation patterns of marcfortines B and C and the virtual identical resonances from 0.81 to 3.72 ppm in their 1 H n.m.r. spectra (Table I) strongly supported the proposed structure <u>2</u> for marcfortine B.

Marcfortines A, B and C seem to be biogenetically derived from two units of dimethylallyl-pyrophosphate, pipecolic acid and tryptophan. The loss of the carbonyl oxygen of tryptophan in the supposed formed dioxopiperazine ring has been found previously in fungal alkaloids 6 . The formation of the six membered ring on the tryptophan unit in marcfortine C probably involves, as in the seven membered rings of marcfortine A and B, an epoxy C-6 reverse O-isopentenyl intermediate which after transpostion to the corresponding aldehyde undergoes intramolecular nucleophilic attack by the aromatic ring.

Quite recently ⁷, the structure of paraherquamide from <u>Penicillium</u> <u>paraherquei</u> has been reported. It also has a seven membered ring located on the tryptophan unit and differs from marcfortine A $\underline{1}^{1}$ by the nature of the second aminoacid (2-hydro-2-methyl proline instead of pipecolic acid).

<u>Acknowledgements</u>. We are grateful to Mr. C. Merienne (Laboratoire de RMN à Haut Champs, Orsay) for 1 H-NMR measurements at 250 MHz and Dr. B.C. Das for helpful discussions concerning the mass spectral fragmentation.

REFERENCES AND FOOTNOTES

- J. Polonsky, M.-A. Merrien, T. Prangé, Cl. Pascard and S. Moreau, <u>J.C.S.</u> <u>Chem.Comm.</u>, 601 (1980).
- P.M. Scott, M.-A. Merrien, and J. Polonsky, <u>Experientia</u>, 32, 140 (1976); J. Polonsky, M.-A. Merrien and P.M. Scott, <u>Ann.Nutr.Aliment</u>, 31, 693 (1977); P.M. Scott and B.P.C. Kennedy, <u>J.Agric.Food Chem.</u>, 24, 865 (1976); P.M. Scott, B.P.C. Kennedy, J. Harwig, and B.J. Blanchfield, <u>Appl & Envir</u>. <u>Microb.</u>, 33, 249 (1977); P.M. Scott, J. Polonsky, and M.-A. Merrien, <u>J.</u> <u>Agric. Food Chem.</u>, <u>27</u>, 201 (1979).
 The spectra of <u>1</u> and <u>2</u> have been recorded on a Bruker HX 90 at 22.63 MHz,
- 3. The spectra of <u>1</u> and <u>2</u> have been recorded on a Bruker HX 90 at 22.63 MHz, in CDCl₃ (δ in ppm downfield from TMS). The reported assignments <u>1</u> for C-16, C-15 and for some of the Me groups of <u>1</u> have been revised. The spectrum of <u>3</u> has been recorded on a Bruker WP 60 at 15.08 MHz using a microprobe, in CDCl₃ (δ in ppm downfield from HMDS (δ HMDS = 1.7 ppm).
- B.P. Braun, J. Hornstra and J.L. Leenhouts, <u>Philips Research Rapport</u>, <u>24</u>, 85 (1969).
- 5. The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW.
- R.F. Bond, J.C.A. Boeyens, C.V. Holzapfel and P.S. Steyn, <u>J.Chem.Soc.</u> <u>Perkin Trans I</u>, 1751 (1979).
- 7. M. Yamazaki, E. Okuyama, M. Kobayashi and H. Inoue, <u>Tetrahedron Letters</u>, <u>32</u>, 135 (1981).

(Received in France 11 March 1981)